首页 > 专业解读 > 正文

导师让做微纳光学,有前途吗?

2024-02-20 19:51:11 | 一一教育网

今天一一教育网小编整理了导师让做微纳光学,有前途吗?相关信息,希望在这方面能够更好帮助到大家。

本文目录一览:

导师让做微纳光学,有前途吗?

介绍下 凸,凹透镜 等光学知识

.正在发光的物体叫做光源。
22.白光有七色:红橙黄绿蓝靛紫。白加任何色等于任何色,同色加同色仍然是同色,不同色相加吸收看不见:黑!
23.红外线与紫外线的作用?(课本第19、20页)
24.光的反射定律(作图关键找法线,法线⊥反射面)三线共面,二线分居,两角相等。(课本第39页)垂直反射面时三线重合两角为0°。入射角越大,反射角也越大。平面镜能成像,能改变光的传播方向(潜望镜)。
25.光的折射定律(作图关键找法线,法线⊥分界面):三线共面,二线分居,斜射时空气中角大。(课本第39页)垂直界面时三线重合两角为0°。入射角越大,折射角也越大。
26.凸透镜成像规律:物远像近小,物近像远大。物像在2焦,等大好求焦。物在1焦处,一定不成像。物在1焦内,正立放大是虚像。1焦分虚实,2焦分大小。(课本第39页)
27.照相机、眼睛应用原理:u>2f, f<v底片<2f倒立缩小的实象。即物远像近小。
28.放大镜应用原理:u<f正立放大的虚象。即物在1焦内,正立放大是虚象。
29.放映机应用原理:f<u<2f, v屏幕>2f倒立放大的实象。即物近像远大。
30.光在同一物质中是沿直线传播的:小孔成像(阳光下树影中的圆形光斑)、影子的形成、瞄准、日食、月食、坐井观天。
31.光在不同物质(真空、空气、玻璃、水)中传播速度是不同的:真空中最快,为3×105千米/秒或3×108米/秒。空气中比真空中稍慢。1光年=9.46×1012千米。
32.平行光→镜面(平滑表面)反射→平行射向另一个方向,平行光→漫(粗糙表面)反射→射向各个方向。黑板反光看不清字,是由于此处黑板平滑发生了镜面反射,淹没了字发生漫反射进入人眼的光线。为了使各个方向的人能看到字或电影,黑板或屏幕表面应粗糙些好。
33.实像都是倒立的(1)由于光的直线传播形成的:小孔成像。(2)由于光的折射形成的:物体在凸透镜1焦以外成的像。[巧记:只有小孔、凸透镜能成实象。] 实象既能用眼睛看到,又可用光屏、底片、胶卷、墙壁等接到。
34.虚像都是正立的[1]由于光的反射形成的:岸上物体在水中成的像(倒影)=平面镜成像(物像等大,像与物体以镜面、水面对称)[作图技巧一:①利用对称性找到像点②任何一条反射光线必经像点;作图技巧二:利用反射定律,随意在物体上同一点作出两条入射光线,作出对应的两条反射光线(是刺入人眼的光线),反向延长相交得像点。]虚象只可用眼睛看到。
[2]由于光的折射形成的:在岸上看水中的物体或在水中看岸上的物体是位置抬高的放大的虚像、物体在凸透镜1焦以内成的正立放大的虚像。[作图技巧:随意在物体上同一点作出两条入射光线,作出对应的两条折射光线(是刺入人眼的光线),反向延长相交得像点。]巧解:要透过两种或两种以上的透明物质或不均匀透明物质看物体。
35.粗测焦距方法:让凸透镜正对太阳光,拿一张白纸在它的另一侧来回移动,直到在纸上出现一个最小最亮的光斑(焦点),测出焦点到凸透镜中心间的距离就是焦距。你还能想出其他测焦距的方法吗?凸透镜对光线起会聚作用。凹透镜对光线起发散作用。三条特殊光线:①平行于主轴的光线,折射后(凹透镜折射后反向延长)经过焦点;②穿过光心的光线勇往直前 ,方向不变 ;③经过或延长经过(凹透镜)焦点的光线折射后平行射出.

36.眼球的结构包括眼球壁和内容物。眼球壁分外膜[包括角膜(无色透明)、巩膜(白色坚韧、眼白部分)];中膜[包括虹膜[黑、蓝、棕色(眼黑部分)]、睫状体(调节晶状体曲度)、脉络膜(营养眼球、使眼球成为暗室)];内膜[视网膜(有感光细胞,但视神经穿出的地方无感光细胞称为盲点,在靠近鼻侧)]。 内容物包括房水、晶状体、玻璃体(都为无色透明)。眼球的折光系统由角膜、房水、晶状体(相当于凸透镜)、玻璃体组成。
37.虹膜调节瞳孔的大小,控制进入眼睛光线的多少:光线亮或强时,瞳孔缩小,进入眼睛的光线减少。光线暗或弱时,瞳孔放大,进入眼睛的光线增多。
38.近视或远视的原因及矫正(课本第33、34页)
39.信息的获取和利用(看课本第38页)、作业本(第 页))。外界事物→感觉器官→传入神经→神经中枢→传出神经→效应器。电磁波包括哪些?x射线、y射线的作用?
40.凸透镜成像作图技巧:在物体同一点画出两条光线,一条平行于主轴折射后经过焦点,另一条穿过光心方向不变,得两折射光线的交点就找到了该像点。
41.要看到物体,该物体上必须有光刺入人眼。光的反射:反射光线与入射光线在同种物质中。光的折射:折射光线与入射光线在不同物质中。

导师让做微纳光学,有前途吗?

导师让做微纳光学,有前途吗?

当然是一个好的方向。

微纳光学技术的多种应用

1)加工新型光栅

借助于大规模集成电路工艺技术,可以加工出新型的光栅。光栅是个实用性很强的基本光学器件,在23ARTICLE | 论文激光与光电子学进展2009.10光谱仪、光通信波分复用器件、激光聚变工程、光谱分析等领域中大量使用。传统的表面光栅不论是机械刻画光栅,还是全息光栅,其表面的光栅结构是很薄的。明胶或光折变体全息光栅的光栅厚度较厚,由于制造工艺的一致性、温度稳定性和长期稳定性问题,在实际应用时仍然有限制。

2)制作深刻蚀亚波长光栅

采用激光全息、光刻工艺和半导体干法刻蚀工艺可以加工出深刻蚀亚波长光栅。其简化的基本工艺流程如图 1 所示。首先,采用激光全息产生高密度光栅的光场;其次,通过光刻工艺,在光刻胶上做出光栅掩模;最后,通过反应离子或高密度等离子体等半导体干法刻蚀技术,加工出深刻蚀的表面光栅

通过在普通石英玻璃中引入深刻蚀光栅结构,如图 2 所示,就可以实现一系列实用的光学器件。图 2(a)所示的高效率光栅,衍射效率理论值为 98%,可以实现偏振无关结构,也就是对于 TE,TM 偏振入射光均可以实现很高的衍射效率。图 2(b)所示为偏振分束器件,也就是将 TE,TM 偏振方向的光完全分开,表现出类似于晶体的偏振分光性能。图 2(c) 所示为在二次布拉格角度下工作的分束光栅。图 2(d) 所示为高效率 1×3 分束器,衍射效率可以高达 98%,和商品化的 1×3 分束器(衍射效率 75%)相比,衍射效率要高出23%, 具有重要的应用前景。

深刻蚀石英光栅可以实现一系列功能:(a)高衍射效率98%

3)可实现多种新型光学元件

利用微纳光学技术,结合数字编码技术,还可以实现更多新型的光学元件,例如偏振透镜 。所谓偏振透镜就是可以仅对一个偏振光成像,而对另外一个偏振光则完全滤除。众所周知,光学透镜是一个基本的光学元件。一般来说,普通的光学透镜没有偏振特性,对于不同偏振光的成像功能完全一样。如果要想实现偏振控制功能,则必须附加上起偏器等元件,这将使得结构复杂、成本昂贵、体积庞大。最近发明的一种微纳结构数字编码的“偏振透镜”能够实现对任意偏振光成像的功能,它利用光学表面的微结构实现偏振选择功能和数字编码实现透镜成像功能,使普通光学材料通过引入微纳光学结构,就可以实现偏振成像的功能。其优点是体积小、重量轻,通过大批量复制技术,可以实现低生产成本,具有良好的产业化前景。

4)提高能源的利用效率

利用微纳光学器件,可以为目前大力提倡的“节能减排”做贡献。例如,光学表面一般是有反射,在利用太阳能或提高半导体激光器的出光效率时,会带来光能的损耗。人们很早就知道,光学表面的微纳结构会起到增加透射、减少反射的作用。由于随机表面结构加工的便利性,这方面的实验论文大量报道。采用随机微纳结构确实能起到一定减反的效果,但对其物理本质深究的并不多。我们的观点认为这是由于渐进的光学表面等效折射率而导致的,而且这个渐进的光学表面等效折射率应该是线性增加的,这样才能够保证光波波前不会受到附加的扰动或干扰,从这个角度来讲,三角形的表面微结构是最完美的,而随机的光学表面微结构会引入附加干扰。而采用光栅模式方法就可以很好理解内在的物理过程 。这个观点对于提高太阳能接受器件的用效率以及半导体激光器件的出光效率,有重要应用价值。在光显示中,利用纳米光学结构的宽带偏振效应,可以提高光能利用率。在手机显示等应用中,利用微纳米结构的波导效应,可以有效控制光的能量分布,提高光能利用

5)可应用于高端光学的场合

利用纳米光学结构色彩控制能力和数字化编码能力,将来有可能在人民币等高端光学防伪中使用。微纳光学结构的色彩控制能力 和大批量复制技术,将来也有可能替代传统油墨印刷,从而发展出新型印刷产业。事实上,半色调编码技术,也就是将灰度图像编码成不同密度的微观二值的模拟技术,很早就用于印刷行业,使得报纸的印刷更加便宜和方便。从面向光学显示的娱乐产业以及飞机驾驶员培训三维场景光学模拟 等高端应用来看,微纳光学都将发挥关键作用。

光学波导的微结构还可以实现光能量的空间分布,在手机,头盔显示等领域有重要的应用前景

2.结论

微纳光学具有广泛的应用前景。例如,下一代光盘产业的研究已经进入到纳米阶段,光学超分辨技术、纳米结构的光学制造、快速相变材料以及利用表面等离子体等纳米光学技术 等都在其中得到了广泛的重视与研究。在光通信、激光武器、大气污染检测等多种应用场合,微纳米光学技术都将发挥重要作用。微纳光学不仅是新型光电子产业的发展方向,也已经成为光学领域的前沿学科方向,在 Nature,Science 等国际顶级期刊上经常有微纳光学领域的论文发表。微纳光学结构的制造是一个基本技术问题,表面等离子体光学器件、负折射率材料等纳米光学器件均需要先进纳米尺度的制造技术,它包括聚焦电子束设备、光刻工艺设备、反应离子刻蚀设备或高密度等离子体刻蚀设备以及激光全息设备等。借助这些纳米制造技术,可以制造出一系列新型的光学元件,例如:偏振分光器件等。因此,微纳光学器件在光存储、光显示、光通信等多个领域,具有重要的应用前景。

导师让做微纳光学,有前途吗?

凹透镜去哪家好?

凹透镜片推荐: 罗敦司得/RODENSTOCK、东海/TOKAI、依视路/ESSILORR、豪雅/HOYA、凯米CHEMI。

1、罗敦司得/RODENSTOCK

罗敦司得在12个国家设有14个镜片生产基地。凭借着其在镜片和镜架制造方面强大的专业能力,罗敦司得公司开始蜚声国际光学界,率先为佩戴者提供“整套式”的眼镜系统,从而一改传统单一化产品现状。 一一教育网

2、东海/TOKAI

东海光学超高折射率材料的眼镜片,既轻又薄,而且色差和耐气候性,易加工性也非常出色。TOKAI镜片比HOYA镜片的知名度稍低,但也是性价比不错的镜片。

3、依视路/ESSILORR

1849年创立于法国,世界视光领域的专家,以生产和销售高品质的眼用光学镜片为主,全球较大的视光企业之一。持续创新一直是依视路的核心基因。1959年依视路创造了树脂镜片和渐进镜片,在全球拥有超过5600多项专利,并连续三年被福布斯评为全球最有创新力的公司之一。

4、豪雅/HOYA

成立于1941年日本,隶属于HOYA株式会社,知名光学品牌,主营光学透镜; 光学棱镜; 双筒望远镜; 磁性数据载体; 计算器; 数据处理设备; 计算机; 眼镜; 眼镜片; 用于制作眼镜片的坯料; 眼镜框; 眼镜盒; 太阳镜; 隐形眼镜; 隐形眼镜盒; 护目镜; 光学玻璃等等。

5、凯米CHEMI

凯米光学(嘉兴)有限公司,凯米CHEMI,镜片知名品牌,始于1985年,韩国第一家专业生产树脂镜片的公司,韩国较大的树脂光学镜片生产销售公司,亚洲领先的镜片制造销售商,中国成长最快的镜片销售商之一。

以上,就是一一教育网小编给大家带来的导师让做微纳光学,有前途吗?全部内容,希望对大家有所帮助!
与“导师让做微纳光学,有前途吗?”相关推荐